Machine Learning Techniques
&
Machine Learning Practices
Orientation
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/8822366/GroupSessionIcon.png)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/8822366/GroupSessionIcon.png)
Faculty
Ashish (Vijay) Tendulkar,
Machine Learning Specialist ,
(Google)
Machine learning,
and Deep learning with applications to Natural Language Processing
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/9208884/Ashish.jpg)
Instructors
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/8840468/annie2.jpg)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/8840478/Arun.jpg)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/8840483/Amrutha.jpg)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/8840500/Passport_Photo.jpg)
Anamika
Arun
Amrutha
Karthik
Swarnim
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1959752/images/9487994/1649656973078.jpg)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/9208853/DJ.jpeg)
Debajyoti
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/9208854/NITIN_JHA.jpeg)
Nitin
Jimmi
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/9208851/jimmi_AM.jpg)
ML Techniques
Regression
Classification
Clustering
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/8827097/calendar.png)
1
An Introduction
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/9206391/pasted-from-clipboard.png)
ML Techniques
Regression
-
Linear
-
Polynomial
-
Regularization
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/8827097/calendar.png)
2-3
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/9206431/pasted-from-clipboard.png)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/9206434/pasted-from-clipboard.png)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/9206439/pasted-from-clipboard.png)
ML Techniques
Classification
-
Least Square
-
Perceptron
-
Naive Bayes
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/8827097/calendar.png)
4-6
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/9206471/pasted-from-clipboard.png)
Sepal
Petal
ML Techniques
Classification
-
KNN
-
Linear SVM
-
NonLinear SVM
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/8827097/calendar.png)
7-8
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/9206471/pasted-from-clipboard.png)
Sepal
Petal
ML Techniques
Classification
-
Decision Tree
-
Bagging
-
Boosting
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/8827097/calendar.png)
9-10
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/9206471/pasted-from-clipboard.png)
Sepal
Petal
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/9206533/pasted-from-clipboard.png)
ML Techniques
Clustering
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/9206544/pasted-from-clipboard.png)
-
K-Means
-
HCA
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/8827097/calendar.png)
11
ML Techniques
Classification
-
Neural Networks
- Back Propagation
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/8827097/calendar.png)
12
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/9206471/pasted-from-clipboard.png)
Sepal
Petal
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/9206680/pasted-from-clipboard.png)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/9206698/pasted-from-clipboard.png)
Does this course have any programming Components?
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/9206705/pasted-from-clipboard.png)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/9206712/pasted-from-clipboard.png)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/9206714/pasted-from-clipboard.png)
def loss(X, w, y):
y_hat = predict(X, w)
samp_loss = np.maximum(-1*y_hat*y, np.zeros(y.shape[0])))
J = np.sum(samp_loss)
return J
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/9206730/pasted-from-clipboard.png)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/9206731/pasted-from-clipboard.png)
How much effort do I need to put into per week?
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/8827541/effort.png)
3 Hours for
watching
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/8827545/watchingvideo.png)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/8827549/live.png)
Live sessions
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/8822896/penandpaper.png)
Activity Questions
Practice Graded
Machine Learning Practice
MLF
MLT
MLP
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/8834780/pasted-from-clipboard.png)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/8834781/pasted-from-clipboard.png)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/8834784/pasted-from-clipboard.png)
Make a hot & sweet drink:
How do you select the required ingredients? How do you mix? Does order of mixing matter? How do you assess the quality? ...
All about ingredients.
Essential and inevitable!
Everything is trivial in cook books
Reading a cook book
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/9208171/pasted-from-clipboard.png)
Our Kitchen
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/9208797/pasted-from-clipboard.png)
from sklearn import datasets
from sklearn import pipeline
from sklearn import linear_model
from sklearn import metrics
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/9208804/pasted-from-clipboard.png)
What is the Grading Policy?
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/8827502/quiz.png)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/8827517/pick.png)
Two Quizzes
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/8827531/plus.png)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/8827533/exam.png)
Final Exam
Types of Questions:
1. MCQ
2. MSQ
3. NAT
4.Programming
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/8827502/quiz.png)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/9207848/pasted-from-clipboard.png)
Two Proctored Programming Exam
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/8827531/plus.png)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/9207856/pasted-from-clipboard.png)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/1839032/images/8827567/questions.png)
Feel free to ask any questions.
MLT_ MLP_Orientation_14_April_2022
By Swarnim POD
MLT_ MLP_Orientation_14_April_2022
- 117