Deep Learning Practice - NLP

Tokenisation, HF Tokenizers

Mitesh M. Khapra, Arun Prakash A

AI4Bharat, Department of Computer Science and Engineering, IIT Madras

N \times

Recall that the transformer is a simple encoder-decoder model with attention mechanism at its core

The input is a sequence of words in the source language

The output is also a sequence of words in the  target language 

Source Input Sequence

Target Input Sequence

Predicted Output Sequence

Multi-Head Attention

Feed forward NN

Add&Norm

Add&Norm

Multi-Head cross Attention

Feed forward NN

Add&Norm

Add&Norm

Multi-Head Masked Attention

Add&Norm

I am reading a book
Naan oru puthagathai padiththu kondirukiren

The lengths of the input and output sequences need not be the same

The tokenizer simply splits the input sequence into tokens.

Each token is associated with a unique ID.

A simple approach is to use whitespace for splitting the text.

Tokenizer

Token to ID

embeddings

Language Model

ID to token

How are you?

\{How,are, you\}
\{How:1,\\ are:2, \\ you:3\}
1:[0.1,0.35 \cdots,0.08],\\ 2:[0.01,1.00,\cdots,0.8], \\ 3:[0.12,0.00,\cdots,0.46]\\

Tokenizer in the Training pipeline

The model then takes these embeddings and predicts token IDs.

Each ID is associated with a unique embedding vector.

During inference, the predicted token IDs are converted back to tokens  (and then to words).

token to words

The tokenizer simply splits the input sequence into tokens.

 A simple approach is to use whitespace for splitting the text.

Tokenizer in the Training pipeline

The tokenizer essentially contains two components: the encoder, which converts input word (token) to a token id, and the decoder, which performs the reverse operation.

Tokenizer

Token ID

embeddings

Language Model

ID to token

How are you?

\{How,are, you\}
\{How:1,\\ are:2, \\ you:3\}
1:[0.1,0.35 \cdots,0.08],\\ 2:[0.01,1.00,\cdots,0.8], \\ 3:[0.12,0.00,\cdots,0.46]\\

token to words

Encoder

Decoder

Each token is associated with a unique ID.

The model then takes these embeddings and predicts token IDs.

Each ID is associated with a unique embedding vector.

During inference, the predicted token IDs are converted back to tokens  (and then to words).

Tokenizer in the Training pipeline

The size of the vocabulary determines the size of the embedding table

Tokenizer

Token ID

embeddings

Language Model

ID to token

How are you?

\{How,are, you\}
\{How:1,\\ are:2, \\ you:3\}
1:[0.1,0.35 \cdots,0.08],\\ 2:[0.01,1.00,\cdots,0.8], \\ 3:[0.12,0.00,\cdots,0.46]\\

token to words

The question then is how do we build (learn) a vocabulary \(\mathcal{V}\) from a large corpus that contains billions of sentences?

We can split the text into words using whitespace (now called pre-tokenization) and add all unique words in the corpus to the vocabulary.

We also include special tokens such as <go>,<stop>,<mask>,<sep>,<cls> and others to the vocabulary based on the type of downstream tasks and the architecture (GPT/BERT)  choice

Is spliting the input text into words using whitespace a good approach?

What about languages like Japanese, which do not use any word delimiters like space?

Why not treat each individual character in a language as a token in the vocabulary?

Some Questions

If so, do we treat the words "enjoy" and "enjoyed" as separate tokens?

Finally, what are good tokens?

I

enjoyed

the

movie

transformers

Feed Forward Network

Multi-Head Attention

<go>

<stop>

映画『トランスフォーマー』を楽しく見ました

Challenges in building a vocabulary

What should be the size of vocabulary?

Larger the size, larger the size of embedding matrix and greater the complexity of computing the softmax probabilities. What is the optimal size?

Out-of-vocabulary

If we limit the size of the vocabulary (say, 250K to 50K) , then we need a mechanism to handle out-of-vocabulary (OOV) words. How do we handle them?

 Handling misspelled words in corpus

Often, the corpus is built by scraping the web. There are chances of typo/spelling errors. Such erroneous words should not be considered as unique words.

Open Vocabulary problem 

A new word can be constructed (say,in agglutinative languages) by combining existing words . The vocabulary, in principle, is infinite (that is, names,numbers,..) which makes a task like machine translation challenging 

Module 1 : Tokenization algorithms

AI4Bharat, Department of Computer Science and Engineering, IIT Madras

Mitesh M. Khapra

Wishlist 

Moderate-sized Vocabulary 

Efficiently handle unknown words during inference

Be language agnostic

Categories

c h a r a c t e r  l e v e l

word level

sub-word level

WordPiece

SentencePiece

BytePairEncoding (BPE)

1-112
30K-50K
>250K

Vocab size

Vocab size

Vocab size

Complexities of subword tokenization [Andrej Karpathy]

  • Why can't LLMs spell words? Tokenization.

  • Why can't LLMs do super simple string processing tasks like reversing a string? Tokenization.

  • Why are LLMs not good at non-English languages (e.g. Japanese)? Tokenization.

  • Why are LLMs bad at simple arithmetic? Tokenization.

  • Why did GPT-2 have trouble coding in Python? Tokenization.

  •  
  •  
  • What is the real root of suffering? Tokenization.

Module 1.1 : Byte Pair Encoding

AI4Bharat, Department of Computer Science and Engineering, IIT Madras

Mitesh M. Khapra

General Pre-processing steps

Hmm.., I know I Don't know

Input text

hmm.., i know i don't know

normalization 

Pre-tokenization

[hmm.., i, know, i , don't,know]

Subword Tokenization

[hmm.., i, know, i, do, #n't,know]

Splitting the text by whitespace was traditionally called tokenization. However, when it is used with a sub-word tokenization algorithm, it is called pre-tokenization.

First the text is normalized, which involves operations such as treating cases, removing accents, eliminating multiple whitespaces, handling HTML tags, etc.

The input text corpus is often built by scraping web pages and ebooks.

Learn the vocabulary (called training) using these words

The tokenization schemes follow a sequence of steps to learn the vocabulary.

Text Corpus

Learn the vocabulary

Pre-process

Post-process

Model

\mathcal{V}

I enjoyed the movie

[I enjoy #ed the movie]

[I enjoy #ed the movie .]

I enjoyed the movie.

Preprocess

Algorithm

import re, collections

def get_stats(vocab):
  pairs = collections.defaultdict(int)
  for word, freq in vocab.items():
    symbols = word.split()
    for i in range(len(symbols)-1):
      pairs[symbols[i],symbols[i+1]] += freq
  return pairs

def merge_vocab(pair, v_in):
  v_out = {}
  bigram = re.escape(' '.join(pair))
  p = re.compile(r'(?<!\S)' + bigram + r'(?!\S)')
  for word in v_in:
  	w_out = p.sub(''.join(pair), word)
  	v_out[w_out] = v_in[word]
  return v_out

vocab = {'l o w </w>' : 5, 'l o w e r </w>' : 2,
'n e w e s t </w>':6, 'w i d e s t </w>':3}
num_merges = 10

for i in range(num_merges):
  pairs = get_stats(vocab)
  best = max(pairs, key=pairs.get)
  vocab = merge_vocab(best, vocab)
print(best)

Start with a dictionary that contains words and their counts

Append a special symbol </w> at the end of each word in the dictionary

Set required number of merges (a hyperparameter)

Get the frequency count for a pair of characters

Merge pairs with maximum occurrence

Initialize the character-frequency table (base vocabulary)

Example

knowing the name of something is different from knowing something. knowing something about everything isn't bad

Word Frequency
'k n o w i n g </w>' 3
't h e </w> 1
'n a m e </w> 1
'o f </w>' 1
's o m e t h i n g </w> 2
'i s </w>' 1
'd i f f e r e n t </w>' 1
'f r o m </w>' 1
's o m e t h i n g . </w>' 1
'a b o u t </w>' 1
'e v e r y t h i n g </w>' 1
"i s n ' t </w> 1
'b a d </w>' 1

</w> identifies the word boundary.

Objective: Find most frequently occurring byte-pair 

Example

knowing the name of something is different from knowing something. knowing something about everything isn't bad

Word Frequency
'k n o w i n g </w>' 3
't h e </w> 1
'n a m e </w> 1
'o f </w>' 1
's o m e t h i n g </w> 2
'i s </w>' 1
'd i f f e r e n t </w>' 1
'f r o m </w>' 1
's o m e t h i n g . </w>' 1
'a b o u t </w>' 1
'e v e r y t h i n g </w>' 1
"i s n ' t </w> 1
'b a d </w>' 1

</w> identifies the word boundary.

Objective: Find most frequently occurring byte-pair 

Let's count the word frequencies first. 

We can count character frequencies from the table

Word Frequency
'k n o w i n g </w>' 3
't h e </w> 1
'n a m e </w> 1
'o f </w>' 1
's o m e t h i n g </w> 2
'i s </w>' 1
'd i f f e r e n t </w>' 1
'f r o m </w>' 1
's o m e t h i n g . </w>' 1
'a b o u t </w>' 1
'e v e r y t h i n g </w>' 1
"i s n ' t </w> 1
'b a d </w>' 1
Character Frequency
'k' 3

Initial token count

Word count

\vdots
\vdots

We could infer that "k" has occurred three times by counting the frequency of occurrence of words having the character "k" in it.

In this corpus, the only word that contains "k" is the word "knowing" and it has occurred three times.

Word Frequency
'k n o w i n g </w>' 3
't h e </w> 1
'n a m e </w> 1
'o f </w>' 1
's o m e t h i n g </w> 2
'i s </w>' 1
'd i f f e r e n t </w>' 1
'f r o m </w>' 1
's o m e t h i n g . </w>' 1
'a b o u t </w>' 1
'e v e r y t h i n g </w>' 1
"i s n ' t </w> 1
'b a d </w>' 1
Character Frequency
'k' 3

Initial token count

Word count

Character Frequency
'k' 3
'n' 13
\vdots
\vdots

Vocab size:13

2*3=6
1*1=1
1*2=2
1*1=1
1*1=1
1*1=1
1*1=1
Word Frequency
'k n o w i n g </w>' 3
't h e </w> 1
'n a m e </w> 1
'o f </w>' 1
's o m e t h i n g </w> 2
'i s </w>' 1
'd i f f e r e n t </w>' 1
'f r o m </w>' 1
's o m e t h i n g . </w>' 1
'a b o u t </w>' 1
'e v e r y t h i n g </w>' 1
"i s n ' t </w> 1
'b a d </w>' 1
Character Frequency
'k' 3

Initial token count

Word count

Character Frequency
'k' 3
'n' 13
Character Frequency
'k' 3
'n' 13
'o' 9
Character Frequency
'k' 3
'n' 13
'o' 9
'</w>' 3+1+1+1+2+...+1=16
\vdots
\vdots

Vocab size:13

Word Frequency
'k n o w i n g </w>' 3
't h e </w> 1
'n a m e </w> 1
'o f </w>' 1
's o m e t h i n g </w> 2
'i s </w>' 1
'd i f f e r e n t </w>' 1
'f r o m </w>' 1
's o m e t h i n g . </w>' 1
'a b o u t </w>' 1
'e v e r y t h i n g </w>' 1
"i s n ' t </w> 1
'b a d </w>' 1
Character Frequency
'k' 3

Initial tokens and count

Word count

Character Frequency
'k' 3
'n' 13
Character Frequency
'k' 3
'n' 13
'o' 9
Character Frequency
'k' 3
'n' 13
'o' 9
'</w>' 3+1+1+1+2+...+1=16
\vdots
\vdots
Character Frequency
'k' 3
'n' 13
'o' 9
'</w>' 16
"'" 1
\vdots
\vdots
\vdots
\vdots

Vocab size:13

Initial Vocab Size :22

Word Frequency
'k n o w i n g </w>' 3
't h e </w> 1
'n a m e </w> 1
'o f </w>' 1
's o m e t h i n g </w> 2
'i s </w>' 1
'd i f f e r e n t </w>' 1
'f r o m </w>' 1
's o m e t h i n g . </w>' 1
'a b o u t </w>' 1
'e v e r y t h i n g </w>' 1
"i s n ' t </w> 1
'b a d </w>' 1
Word Frequency
('k', 'n') 3

Byte-Pair count

Word count

Word Frequency
'k n o w i n g </w>' 3
't h e </w> 1
'n a m e </w> 1
'o f </w>' 1
's o m e t h i n g </w> 2
'i s </w>' 1
'd i f f e r e n t </w>' 1
'f r o m </w>' 1
's o m e t h i n g . </w>' 1
'a b o u t </w>' 1
'e v e r y t h i n g </w>' 1
"i s n ' t </w> 1
'b a d </w>' 1
Word Frequency
('k', 'n') 3
('n', 'o') 3

Byte-Pair count

Word count

Word Frequency
'k n o w i n g </w>' 3
't h e </w> 1
'n a m e </w> 1
'o f </w>' 1
's o m e t h i n g </w> 2
'i s </w>' 1
'd i f f e r e n t </w>' 1
'f r o m </w>' 1
's o m e t h i n g . </w>' 1
'a b o u t </w>' 1
'e v e r y t h i n g </w>' 1
"i s n ' t </w> 1
'b a d </w>' 1
Word Frequency
('k', 'n') 3
('n', 'o' 3
('o', 'w') 3

Byte-Pair count

Word count

Word Frequency
'k n o w i n g </w>' 3
't h e </w> 1
'n a m e </w> 1
'o f </w>' 1
's o m e t h i n g </w> 2
'i s </w>' 1
'd i f f e r e n t </w>' 1
'f r o m </w>' 1
's o m e t h i n g . </w>' 1
'a b o u t </w>' 1
'e v e r y t h i n g </w>' 1
"i s n ' t </w> 1
'b a d </w>' 1
Word Frequency
('k', 'n') 3
('n', 'o' 3
('o', 'w') 3
('w', 'i') 3
('i', 'n')

Byte-Pair count

3
+2
+1
+1
=7

Word count

Word Frequency
'k n o w i n g </w>' 3
't h e </w> 1
'n a m e </w> 1
'o f </w>' 1
's o m e t h i n g </w> 2
'i s </w>' 1
'd i f f e r e n t </w>' 1
'f r o m </w>' 1
's o m e t h i n g . </w>' 1
'a b o u t </w>' 1
'e v e r y t h i n g </w>' 1
"i s n ' t </w> 1
'b a d </w>' 1
Word Frequency
('k', 'n') 3
('n', 'o' 3
('o', 'w') 3
('w', 'i') 3
('i', 'n') 7
('n', 'g') 7
('g', '</w>') 6
('t', 'h') 5
('h', 'e') 1
('e', '</w>' 2
('a', 'd') 1
('d', '</w>') 1

Byte-Pair count

\vdots
\vdots

Word count

Character Frequency
'k'
'n' 13 
'o' 9
'i' 10
'</w>' 16
"'" 1

Initial Vocabulary

Merge the most commonly occurring pair : \((i,n) \rightarrow in\)

\vdots
\vdots
"in" 7
Word Frequency
'k n o w i n g </w>' 3
't h e </w> 1
'n a m e </w> 1
'o f </w>' 1
's o m e t h i n g </w> 2
'i s </w>' 1
'd i f f e r e n t </w>' 1
'f r o m </w>' 1
's o m e t h i n g . </w>' 1
'a b o u t </w>' 1
'e v e r y t h i n g </w>' 1
"i s n ' t </w> 1
'b a d </w>' 1
Word Frequency
('k', 'n') 3
('n', 'o' 3
('o', 'w') 3
('w', 'i') 3
('i', 'n') 7
('n', 'g') 7
('g', '</w>') 6
('t', 'h') 5
('h', 'e') 1
('e', '</w>' 2
('a', 'd') 1
('d', '</w>') 1

Byte-Pair count

\vdots
\vdots

Word count

Character Frequency
'k'
'n' 13 -7 = 6
'o' 9
'i' 10-7 = 3
'</w>' 16
"'" 1

Updated Vocabulary

Merge the most commonly occurring pair 

\vdots
\vdots
"in" 7

Update token count

Added new token

Word Frequency
'k n o w in g </w>' 3
't h e </w> 1
'n a m e </w> 1
'o f </w>' 1
's o m e t h in g </w> 2
'i s </w>' 1
'd i f f e r e n t </w>' 1
'f r o m </w>' 1
's o m e t h in g . </w>' 1
'a b o u t </w>' 1
'e v e r y t h in g </w>' 1
"i s n ' t </w> 1
'b a d </w>' 1
Word Frequency
('k', 'n') 3
('n', 'o' 3
('o', 'w') 3
('w', 'i') 3
('i', 'n') 7
('n', 'g') 7
('g', '</w>') 6
('t', 'h') 5
('h', 'e') 1
('e', '</w>' 2
('a', 'd') 1
('d', '</w>') 1

Byte-Pair count

\vdots
\vdots

Word count

Character Frequency
'k'
'n' 6
'o' 9
'i' 3
'</w>' 16
"'" 1
'g': 7 7

Updated vocabulary

\vdots
\vdots
"in" 7

Now, treat "in" as a single token and repeat the steps.

Word Frequency
'k n o w in g </w>' 3
't h e </w> 1
'n a m e </w> 1
'o f </w>' 1
's o m e t h in g </w> 2
'i s </w>' 1
'd i f f e r e n t </w>' 1
'f r o m </w>' 1
's o m e t h in g . </w>' 1
'a b o u t </w>' 1
'e v e r y t h in g </w>' 1
"i s n ' t </w> 1
'b a d </w>' 1
Word Frequency
('k', 'n') 3
('n', 'o' 3
('o', 'w') 3
('w', 'i') 3
('w','in') 3
('in', 'g') 7
('g', '</w>') 6
('t', 'h') 5
('h', 'e') 1
('e', '</w>' 2
('a', 'd') 1
('d', '</w>') 1

Byte-Pair count

\vdots
\vdots

Word count

Character Frequency
'k'
'n' 6
'o' 9
'i' 3
'</w>' 16
"'" 1
'g': 7 7

Updated vocabulary

\vdots
\vdots
"in" 7
"ing" 7

Therefore, the new byte pairs are (w,in):3,(in,g):7, (h,in):4

Note, at iteration 4, we treat (w,in) as a pair instead of (w,i)

Word Frequency
'k n o w in g </w>' 3
't h e </w> 1
'n a m e </w> 1
'o f </w>' 1
's o m e t h in g </w> 2
'i s </w>' 1
'd i f f e r e n t </w>' 1
'f r o m </w>' 1
's o m e t h in g . </w>' 1
'a b o u t </w>' 1
'e v e r y t h in g </w>' 1
"i s n ' t </w> 1
'b a d </w>' 1
Word Frequency
('k', 'n') 3
('n', 'o' 3
('o', 'w') 3
('w', 'in') 3
('h', 'in') 4
('in', 'g') 7
('g', '</w>') 6
('t', 'h') 5
('h', 'e') 1
('e', '</w>' 2
('a', 'd') 1
('d', '</w>') 1

Byte-Pair count

\vdots
\vdots

Word count

Character Frequency
'k'
'n' 6
'o' 9
'i' 3
'</w>' 16
"'" 1
'g': 7 7

Updated vocabulary

\vdots
\vdots
"in" 7
"ing" 7

Of all these pairs, merge most frequently occurring byte-pairs

which turns out to be "ing"

Now, treat "ing" as a single token and repeat the steps

After 45 merges

'k n o w i n g </w>'
't h e </w>
'n a m e </w>
'o f </w>'
's o m e t h i n g </w>
'i s </w>'
'd i f f e r e n t </w>'
'f r o m </w>'
's o m e t h i n g . </w>'
'a b o u t </w>'
'e v e r y t h'
"i s n ' t </w>
'b a d </w>'

The final vocabulary contains initial vocabulary and all the merges (in order). The rare words are broken down into two or more subwords

At test time, the input word is split into a sequence of characters, and the characters are merged into larger known symbols 

everything

tokenizer

everyth

ing

The pair ('i','n') is merged first and follwed by the pair ('in','g')

For a larger corpus, we often end up with a vocabulary whose size is smaller than considering individual words as tokens

everything

bad

tokenizer

b

d

bad

a

Tokens
'k'
'n'
'o'
'i'
'</w>'
'in'
'ing'
\vdots

The algorithm offers a way to adjust the size of the vocabulary as a function of the number of merges.

\vdots

BPE for non-segmented languages

Languages such as Japanese and Korean are non-segmented 

However, BPE requires space-separated words

How do we apply BPE for non-segmented languages then?

In practice, we can use language specific morphology based word segmenters such as Juman++ for Japanese (as shown in the figure on the right)

映画『トランスフォーマー』を楽しく見ました

Input text

Pre-tokenization

Word level Segmenter

Juman++ (or) Mecab

Run BPE

[Eiga, toransufōmā, o, tanoshi,#ku, mi,#mashita]
[Eiga, toransufōmā, o, tanoshiku, mimashita]

However, in the case of multilingual translation, having a language agnostic tokenizer is desirable. 

Example:

\(\mathcal{V}=\{a,b,c,\cdots,z,lo,he\}\)

Tokenize the text "hello lol"

[hello],[lol]

search for the byte-pair 'lo', if present merge

Yes. Therefore, Merge

[h e l lo], [lo l]

search for the byte-pair 'he', if present merge

Yes. Therefore, Merge

[he l lo], [lo l]

return the text after merge

he #l #lo, lo #l

Module 1.2 : WordPiece

AI4Bharat, Department of Computer Science and Engineering, IIT Madras

Mitesh M. Khapra

In BPE we merged a pair of tokens which has the highest frequency of occurence.

Take the frequency of occurrence of individual tokens in the pair into account

Word Frequency
('k', 'n') 3
('n', 'o') 3
('o', 'w') 3
('w', 'i') 3
('i', 'n') 7
('n', 'g') 7
('g', '.') 1
('t', 'h') 5
('h', 'e') 1
('e', '</w>') 2
('a', 'd') 1
\vdots
\vdots

What if there are more pairs that are occurring with the same frequency, for example ('i','n') and ('n','g')? 

score=\frac{count(\alpha,\beta)}{count(\alpha)count(\beta)}

Now we can select a pair of tokens where the individual tokens are less frequent in the vocabulary

The WordPiece algorithm uses this score to merge the pairs.

Word Frequency
'k n o w i n g' 3
't h e ' 1
'n a m e ' 1
'o f ' 1
's o m e t h i n g ' 2
'i s ' 1
'd i f f e r e n t ' 1
'f r o m ' 1
's o m e t h i n g. ' 1
'a b o u t ' 1
'e v e r y t h i n g ' 1
"i s n ' t ' 1
'b a d ' 1

Word count

Character Frequency
'k' 3
'#n' 13
'#o' 9
't' 16
'#h' 5
"'" 1

Initial Vocab Size :22

\vdots
\vdots
\vdots
\vdots

knowing

k  #n  #o  #w  #i  #n  #g

Subwords are identified by prefix ## (we use single # for illustration)

Word count

Word Frequency
'k n o w i n g' 3
't h e ' 1
'n a m e ' 1
'o f ' 1
's o m e t h i n g ' 2
'i s ' 1
'd i f f e r e n t ' 1
'f r o m ' 1
's o m e t h i n g. ' 1
'a b o u t ' 1
'e v e r y t h i n g ' 1
"i s n ' t ' 1
'b a d ' 1
Word Frequency
('k', 'n') 3
('n', 'o') 3
('o', 'w') 3
('w', 'i') 3
('i', 'n') 7
('n', 'g') 7
('g', '.') 1
('t', 'h') 5
('h', 'e') 1
('e', '</w>') 2
('a', 'd') 1
\vdots
\vdots

ignoring the prefix #

Freq of 1st element Freq of 2nd element score
'k':3 'n':13 0.076
'n':13 'o':9 0.02
'o':9 'w':3 0.111
'i':10 'n':13 0.05
'n':13 'g':7 0.076
't':8 'h':5 0.125
'a':3 'd':2 0.16
score=\frac{count(\alpha,\beta)}{count(\alpha)count(\beta)}

Now, merging is based on the score of each byte pair.

Merge the pair with highest score

Small Vocab

Larger Vocab

Medium

 Vocab

N \quad Merges
More \quad Merges

We start with a character level vocab

1-112
30K-50K
100K-250K

                                                                         and keep merging until a desired vocabulary size is reached

Small Vocab

Larger Vocab

Medium

 Vocab

More \quad Elimination
N \quad eliminations

We start with word level vocab

1-112
30K-50K
100K-250K

                                                             and keep eliminating words until a desired vocabulary size is reached

Well, we can do the reverse as well.

That's what we will see next.

Module 1.3 : SentencePiece

AI4Bharat, Department of Computer Science and Engineering, IIT Madras

Mitesh M. Khapra

\mathbf{x_1}=he,ll,o
\mathbf{x_3}=he,l,lo
\mathbf{x_2}=h,el,lo
\mathbf{x_4}=hell,o

A given word can have numerous subwords.

\(\mathcal{V}\)={h,e,l,l,o,he,el,lo,ll,hell}

however, following the merge rule, BPE outputs

:he,l,lo

On the other hand, if 

\(\mathcal{V}\)={h,e,l,l,o,el,he,lo,ll,hell}

then BPE outputs:

h,el,lo

Therefore, we say BPE is greedy and deterministic (we can use BPE-Dropout [Ref] to make it stochastic)

For instance, the word "\(X\)=hello" can be segmented in multiple ways (by BPE) even with the same vocabulary  

The probabilistic approach is to find the subword sequence \(\mathbf{x^*} \in \{\mathbf{x_1},\mathbf{x_2},\cdots,\mathbf{x_k}\}\) that maximizes the likelihood of the word \(X\)

The word \(X\) in sentencepiece means a sequence of characters or words (without spaces)

Therefore, it can be applied to languages (like Chinese and Japanese)  that do not use any word delimiters in a sentence.

X

All possible subwords of \(X\)

hidden

observed

Let \(\mathbf{x}\) denote a subword sequence of length \(n\).

P(\mathbf{x}) = \prod\limits_{i=1}^{n} P(x_i)
\mathbf{x}^* = \argmax_{\mathbf{x} \in S(X)} P(\mathbf{x})
\sum \limits_{x \in \mathcal{V}} p(x)=1
\mathbf{x}=(x_1, x_2, \dots, x_n)

then the probability of the subword sequence (with unigram LM) is simply

the objective is to find the subword sequence for the input sequence \(X\) (from all possible segmentation candidates of  \(S(X)\))  that maximizes the (log) likelihood of the sequence

Recall that the subwords \(p(x_i)\) are hidden (latent) variables.

Then, for all the sequences  in the dataset \(D\), we define the likelihood function as

\mathcal{L}= \sum \limits_{s=1}^{|D|}\log(P(X^s))
= \sum \limits_{s=1}^{|D|}\log \Big(\sum \limits_{\mathbf{x} \in S(X^s)} P(\mathbf{x}) \Big)

Therefore, given the vocabulary \(\mathcal{V}\), Expectation-Maximization (EM) algorithm could be used to maximize the likelihood

We can use Viterbi decoding to find \(\mathbf{x}^*\).

Word Frequency
'k n o w i n g' 3
't h e ' 1
'n a m e ' 1
'o f ' 1
's o m e t h i n g ' 2
'i s ' 1
'd i f f e r e n t ' 1
'f r o m ' 1
's o m e t h i n g. ' 1
'a b o u t ' 1
'e v e r y t h i n g ' 1
"i s n ' t ' 1
'b a d ' 1

Let \(X=\) "knowing"  and a few segmentation candidates be \(S(X)=\{`k,now,ing`,`know,ing`,`knowing`\}\)

p(\mathbf{x_1}=k,now,ing)
=p(k)p(now)p(ing)
=\frac{3}{16} \times \frac{3}{16} \times \frac{7}{16}
=\frac{63}{4096}
p(\mathbf{x_2}=know,ing)
=p(know)p(ing)
=\frac{21}{256}=\frac{336}{4096}
p(\mathbf{x_3}=knowing)
=p(knowing)
=\frac{3}{16}=\frac{768}{4096}

Unigram model favours the segmentation with least number of subwords

Given the unigram language model we can calculate the probabilities of the segments as follows

\mathbf{x}^* = \argmax_{\mathbf{x} \in S(X)} P(\mathbf{x})=\mathbf{x_3}

In practice, we use Viterbi decoding to find \(\mathbf{x}^*\) instead of enumerating all possible segments

  1. Construct a reasonably large seed vocabulary using BPE or Extended Suffix Array algorithm.

  2. E-Step:

    Estimate the probability for every token in the given vocabulary using frequency counts in the training corpus

  3. M-Step:

    Use Viterbi algorithm to segment the corpus and return optimal segments that maximizes the (log) likelihood.

  4. Compute the likelihood for each new subword from optimal segments

  5. Shrink the vocabulary size by removing top \(x\%\) of subwords that have the smallest likelihood.

  6. Repeat step 2 to 5 until desired vocabulary size is reached

Algorithm

Set the desired vocabulary size

Let us consider segmenting the word "whereby" using Viterbi decoding

k

a

no

b

e

d

f

now

bow

bo

in

om

ro

ry

ad

ng

out

eve

win

some

bad

owi

ing

hing

thing

g

z

er

\mathcal{V}
Token log(p(x))
b -4.7
e -2.7
h -3.34
r -3.36
w -4.29
wh -5.99
er -5.34
where -8.21
by -7.34
he -6.02
ere -6.83
here -7.84
her -7.38
re -6.13
w\\-4.29
t=1
whereby

Forward algorithm

Iterate over every position in the given word

output the segment which has the highest likelihood

w
Token log(p(x))
b -4.7
e -2.7
h -3.34
r -3.36
w -4.29
wh -5.99
er -5.34
where -8.21
by -7.34
he -6.02
ere -6.83
here -7.84
her -7.38
re -6.13
h
wh
-7.63
-5.99
whereby
w
(w,h)

At this position, the posible segmentations of the slice "wh" are (w,h) and (wh) 

Compute the log-likelihood for both and output the best one.

Token log(p(x))
b -4.7
e -2.7
h -3.34
r -3.36
w -4.29
wh -5.99
er -5.34
where -8.21
by -7.34
he -6.02
ere -6.83
here -7.84
her -7.38
re -6.13
whereby
h
wh
-7.63
-5.99
e
-10.33
he
-10.31
e
-8.69

We do not need to compute the likelihood of (w,h,e) as we already ruled out (w,h) in favor of (wh). We display it for completeness

whe
-\infty

Of these, (wh,e) is the best segmentation that maximizes the likelihood. 

w
Token log(p(x))
b -4.7
e -2.7
h -3.34
r -3.36
w -4.29
wh -5.99
er -5.34
where -8.21
by -7.34
he -6.02
ere -6.83
here -7.84
her -7.38
re -6.13
whereby
wh
-5.99
he
-10.31
e
-8.69
whe
-\infty
\times
\times
her
-11.67
er
-11.33
r
-12.05
wher
-\infty
h
w
\times
-7.63
Token log(p(x))
b -4.7
e -2.7
h -3.34
r -3.36
w -4.29
wh -5.99
er -5.34
where -8.21
by -7.34
he -6.02
ere -6.83
here -7.84
her -7.38
re -6.13
whereby
wh
-5.99
he
-10.31
e
-8.69
whe
-\infty
\times
\times
her
-11.67
er
-11.33
r
-12.05
wher
\times
-\infty
\times
where
-8.21
h
w
\times
here
-10.54
\times
e
-14.03
ere
-12.82
\times
-7.63
Token log(p(x))
b -4.7
e -2.7
h -3.34
r -3.36
w -4.29
wh -5.99
er -5.34
where -8.21
by -7.34
he -6.02
ere -6.83
here -7.84
her -7.38
re -6.13
whereby
wh
-5.99
he
-10.31
e
-8.69
whe
-\infty
\times
\times
her
-11.67
er
-11.33
r
-12.05
wher
\times
-\infty
\times
where
-8.21
h
w
\times
here
-10.54
\times
e
-14.03
ere
-12.82
\times
-7.63
whereb
-\infty
b
-12.91
Token log(p(x))
b -4.7
e -2.7
h -3.34
r -3.36
w -4.29
wh -5.99
er -5.34
where -8.21
by -7.34
he -6.02
ere -6.83
here -7.84
her -7.38
re -6.13
whereby
wh
-5.99
he
-10.31
e
-8.69
whe
-\infty
\times
\times
her
-11.67
er
-11.33
r
-12.05
wher
\times
-\infty
\times
where
-8.21
h
w
\times
here
-10.54
\times
e
-14.03
ere
-12.82
\times
-7.63
whereb
-\infty
b
-12.91
by
-15.51
\times
\times
\times
Token log(p(x))
b -4.7
e -2.7
h -3.34
r -3.36
w -4.29
wh -5.99
er -5.34
where -8.21
by -7.34
he -6.02
ere -6.83
here -7.84
her -7.38
re -6.13

Backtrack

whereby
wh
-5.99
he
-10.31
e
-8.69
whe
-\infty
\times
\times
her
-11.67
er
-11.33
r
-12.05
wher
\times
-\infty
\times
where
-8.21
h
w
\times
here
-10.54
\times
e
-14.03
ere
-12.82
\times
-7.63
whereb
-\infty
b
-12.91
by
-15.51

The best segmentation of the word "whereby" that maximizes the likelihood is "where,by"

\times
\times
\times

We can follow the same procedure for languages that do not use any word delimiters in a sentence.

Module 2 : HF Tokenizers

AI4Bharat, Department of Data Science and Artificial Intelligence, IIT Madras

Mitesh M. Khapra

Recall the general Pre-processing pipeline

Hmm.., I know I Don't know

Input text

hmm.., i know i don't know

Normalization 

Pre-tokenization

[hmm.., i, know, i , don't,know]

Tokenization using learned vocab

HF tokenizers module provides a class that encapsulates all of these components

from tokenizers import Tokenizer

[hmm.., i, know, i, do, #n't,know]

Post Processing (add model specific tokens)

pre-tokenizer

normalizer

Tokenizer

Algorithm (model)

Post Processor

[<go>,hmm.., i, know, i, do, #n't,know,<end>]

HF tokenizers module provides a  class that encapsulates all of these compoents

from tokenizers import Tokenizer

pre-tokenizer

normalizer

Tokenizer

Algorithm (model)

Post Processor

We can customize  each step of the tokenizer pipeline

WhiteSpace, Regex, BERTlike

BPE,WordPiece..

LowerCase, StripAccents

Choices

Insert model specific  tokens

via the setter and getter properties of the class (just like a plug-in)

Property (getter and setter,del) 

  1. model
  2. normalizer
  3. pre_tokenizer
  4. post_processor
  5. padding (no setter)
  6. truncation (no setter)
  7. decoder
tokenizer = Tokenizer(BPE()) 
#doesn't matter  order in which the properties are set
tokenizer.pre_tokenizer = Whitespace()
tokenizer.normalizer = Lowercase()

pre-tokenizer

normalizer

Tokenizer

Algorithm (model)

Post Processor

WhiteSpace

BPE

LowerCase

[CLS],[SEP]

tokenizer = Tokenizer(BPE()) 
#doesn't matter  order in which the properties are set
tokenizer.pre_tokenizer = Whitespace()
tokenizer.normalizer = Lowercase()

Learning the vocabualty

Provides set of methods for training (learn the vocabulary), encoding input and decoding predictions and so on

  1. add_special_tokens(str,AddedToken) 
    • no token_ids are assigned
  2. add_tokens()
  3. enable_padding(), enable_truncation()
  4. encode(seq,pair,is_pretokenized), encode_batch()
  5. decode(),decode_batch()
  6. from_file(.json) # serialized local  json file 
  7. from_pretrained(.json) # from hub
  8. get_vocab(), get_vocab_size()
  9. id_to_token(), token_to_id()
  10. post_process()
  11. train(files), train_from_iterator(dataset)

Tokenizer

# Core Class
class tokenizers.Tokenizer
.train_from_iterator(dataset, trainer)

Object

We do not need to call each of these methods sequentially to build a tokenizer

After setting Normalizer and Pre-Tokenizer, we just need to call the train methods  to build the vocabulary 

List of strings (text)

(vocab_size, special_tokens,prefix,..)

Once the training is complete, we can call methods such as encode for encoding the input string 

What should be the output if we call encode_batch method?

Encoding Class

Tokenizer

Object

Assume that the tokenizer has been trained (i.e., learned the vocabulary) 

['This is great','tell me a joke']

{input_ids, attention_mask, type_ids, ..}

The output is a dictionary that contains not only  input_ids but also optional outputs like attention_mask, type_ids (which we will learn about in the next lecture)

We can customize the output behaviour by passing the instance of Encoding object to the post_process() methods of Tokenizer (it is used internally, we can just set the desired formats in the optional parameters like "pair" in encode())

encoding = Encoding()
tokenizer.post_process(encoding,pair=True)

Customization

It is possible to customize each component as desired. However, we will not go into details in this course.

The takeaway is that we can build and train a tokenizer on any dataset (regardless of size) in 6 to 8 lines of code! 

Notebooks: Github Link

DLP-Lecture-2

By Arun Prakash