-
DLP-NLP-W4
LLM Finetuning Techniques
-
DLP_NLP_W3
-
DLP-Lecture-2
-
DLP-Lecture-1
-
Transformers-Distilled-HF-Workshop-IITMBS
-
Opportunities-in-the-llm-field
-
Kolmogorov-Arnold-Networks (KAN)
Intro to KAN
-
PostNorm-vs-PreNorm
-
Lecture-9-Positional-Encoding-Schemes
-
Lecture-7-Pre-training Dataset
-
Lecture-8-Fast Attention Mechanisms
-
Lecture-6-BigPicture
-
Lecture-5-T5
-
Lecture-3-BERT
-
Linear Regression - Kernel Regression - ProbabilisticView
MLT - Week5 Session slides
-
Kernel-PCA-MLT
A presentation used in Machine Learning Techniques Week-2 live session
-
IntrotoGPT-Decoding-Strategies
-
Lecture-4-Tokenizers
Covers Different Types of tokenizers used in NLP
-
Introduction-To-Transformers
-
Pytorch
A walkthrough over Pytorch framework to develop dl models using both low level and high-level APIs
-
Transformers-A-Short-Version
-
CS6910: Lecture 5-Part2
-
Workshop-IITM-BS-Math
-
CS6910: Lecture 1
-
CS6910: Lecture 4
Sigmoid Neuron to Feedforward Neural Networks
-
CS6910: Lecture 3
Sigmoid Neuron to Feedforward Neural Networks
-
CS6910: Lecture 2
A (brief/partial) History of Deep Learning
-
Pre-Training_and_fine-tuning
-
ML_Tamil_w1
-
Copy of CS6910: Lecture 3
Sigmoid Neuron to Feedforward Neural Networks
-
CS6910: Lecture 5
-
CS6910:Lecture-11
-
CS6910: Lecture 7
-
CS6910: Lecture 6
-
MLP_Linear regression
-
MLF_SWI_5
-
MLP_Week1
-
MLF_Tutorial_5
-
MLF_SWI_1
-
Geogebra for Interactive Teaching
Sensitization on Geogebra
-
Lecture 5
Sigmoid Neuron to Feedforward Neural Networks