Solve with Instructors
Week - 5
Arun Prakash A
The Length of the complex vector \( u = \begin{bmatrix} 1+i \\ 1-i \\1 \end{bmatrix}\)
The Length of a complex vector and its conjugate remains same. True or False?
The Length of the complex vector \( u = \begin{bmatrix} 1+i \\ 1-i \\1 \end{bmatrix}\) scaled by the scalar \( \eta = 4+3i \) is?
Check whether the two vectors \(x = \begin{bmatrix} i \\ 3 \\1 \end{bmatrix} \)
and \(y = \begin{bmatrix} i \\ 0 \\1 \end{bmatrix} \) are orthogonal?
Find the unit vector that points in the opposite direction of the vector \(x = \begin{bmatrix} 1-i \\ 3+i \\2 \\1+i \end{bmatrix} \)
Identify non-Hermitian matrix from the following list of matrices and justify why it is not Hermitian?
- \(A = \begin{bmatrix} 3 & i & 2+i\\ -i & -2 & -7\\2-i & 7*\cos(\pi)&1 \end{bmatrix} \)
2.\(B = \begin{bmatrix} 1 & i \\ -i & -i*i \end{bmatrix} \)
Every diagonal matrix is Hermitian.
True or False
Every real diagonal matrix is Hermitian.
True or False
3. \(C = \begin{bmatrix} -2 & 1-2i \\ 0 & 3 \end{bmatrix} \)
4. \(CC^*\) and \(C^*C\) are Hermitian?
The statement that the singular values are always greater than or equal to zero is?True or False
Find the SVD for the matrix \( A = \begin{bmatrix} 1& 2 \\ 3&6 \end{bmatrix}\).
1. Find \( A^TA\)
2. Eigenvalues of \( A^TA\)
\( \lambda^2-50\lambda=0\)
\( \lambda_1 =50, \lambda_2 = 0\)
3. Eigenvectors of \( A^TA\)
\(\lambda_1 = 50\)
\(x_1 = \begin{bmatrix}0.5\\1 \end{bmatrix}\)
\(x_2 = \begin{bmatrix}-2\\1 \end{bmatrix}\)
4. Normalize the Eigenvectors of \( A^TA\) and construct \(Q_2^T\)
5. To find \(Q_1\), either find Eigenvectors of \( AA^T\) or use the relation \(y_1 = \frac{1}{\sigma_1}A*x_1\)
\(y_1 = \frac{1}{\sigma_1}A*x_1\)
\(y_2 = \frac{1}{\sigma_2}A*x_2\)
However, \(\sigma_2 = 0\)?
What is the geometrical meaning of \(\sigma_2 = 0\)?
MLF_SWI_5
By Arun Prakash
MLF_SWI_5
- 174